dimensional$21386$ - ορισμός. Τι είναι το dimensional$21386$
Diclib.com
Λεξικό ChatGPT
Εισάγετε μια λέξη ή φράση σε οποιαδήποτε γλώσσα 👆
Γλώσσα:

Μετάφραση και ανάλυση λέξεων από την τεχνητή νοημοσύνη ChatGPT

Σε αυτήν τη σελίδα μπορείτε να λάβετε μια λεπτομερή ανάλυση μιας λέξης ή μιας φράσης, η οποία δημιουργήθηκε χρησιμοποιώντας το ChatGPT, την καλύτερη τεχνολογία τεχνητής νοημοσύνης μέχρι σήμερα:

  • πώς χρησιμοποιείται η λέξη
  • συχνότητα χρήσης
  • χρησιμοποιείται πιο συχνά στον προφορικό ή γραπτό λόγο
  • επιλογές μετάφρασης λέξεων
  • παραδείγματα χρήσης (πολλές φράσεις με μετάφραση)
  • ετυμολογία

Τι (ποιος) είναι dimensional$21386$ - ορισμός

BRANCH OF TOPOLOGY THAT STUDIES TOPOLOGICAL SPACES OF FOUR OR FEWER DIMENSIONS
Low dimensional topology; 4-dimensional topology; Four-dimensional topology; Low-dimensional topologist

Two-dimensional window design         
  • Figure1: 2-D circularly symmetric window surface plot
  • Figure2: 2-D circularly symmetric window contour plot
Two dimensional window design
Windowing is a process where an index-limited sequence has its maximum energy concentrated in a finite frequency interval. This can be extended to an N-dimension where the N-D window has the limited support and maximum concentration of energy in a separable or non-separable N-D passband.
Three-dimensional space         
  • The cross-product in respect to a right-handed coordinate system
  • 50px
  • 50px
  • 50px
  • 50px
  • 50px
  • 50px
  • 50px
  • 50px
  • perspective projection]] of a sphere onto two dimensions
  • 50px
  • [[Wikipedia]]'s globe logo in 3-D
GEOMETRIC MODEL IN WHICH A POINT IS SPECIFIED BY THREE PARAMETERS
Three-dimensional; Three dimensional; 3-dimensional; 3-Dimensional; Three dimension; Three dimensions; 3-dimension; 3 dimension; 3 dimensional; 3-dimensions; 3 dimensions; 3-dimensional space; Three dimensional space; Third dimension; Euclidean 3-space; 3rd dimension; Three Dimensional; Three dimensionality; The 3rd Dimension; Width, length, and depth; Spatial geometry; 3D space; Three dimensional scene; Threespace; Three-space; 3-D space; (x, y, z); Tri-dimensional space; Three-dimensional space (mathematics); 3-dimensional Euclidean space; Three-dimensionally; 🆛; R^3; Three-dimensional Euclidean space
Three-dimensional space (also: 3D space, 3-space or, rarely, tri-dimensional space) is a geometric setting in which three values (called parameters) are required to determine the position of an element (i.e.
three-dimensional         
  • The cross-product in respect to a right-handed coordinate system
  • 50px
  • 50px
  • 50px
  • 50px
  • 50px
  • 50px
  • 50px
  • 50px
  • perspective projection]] of a sphere onto two dimensions
  • 50px
  • [[Wikipedia]]'s globe logo in 3-D
GEOMETRIC MODEL IN WHICH A POINT IS SPECIFIED BY THREE PARAMETERS
Three-dimensional; Three dimensional; 3-dimensional; 3-Dimensional; Three dimension; Three dimensions; 3-dimension; 3 dimension; 3 dimensional; 3-dimensions; 3 dimensions; 3-dimensional space; Three dimensional space; Third dimension; Euclidean 3-space; 3rd dimension; Three Dimensional; Three dimensionality; The 3rd Dimension; Width, length, and depth; Spatial geometry; 3D space; Three dimensional scene; Threespace; Three-space; 3-D space; (x, y, z); Tri-dimensional space; Three-dimensional space (mathematics); 3-dimensional Euclidean space; Three-dimensionally; 🆛; R^3; Three-dimensional Euclidean space
¦ adjective
1. having or appearing to have length, breadth, and depth.
2. lifelike or real: it is a tall tale, but three-dimensional.
Derivatives
three-dimensionality noun
three-dimensionally adverb

Βικιπαίδεια

Low-dimensional topology

In mathematics, low-dimensional topology is the branch of topology that studies manifolds, or more generally topological spaces, of four or fewer dimensions. Representative topics are the structure theory of 3-manifolds and 4-manifolds, knot theory, and braid groups. This can be regarded as a part of geometric topology. It may also be used to refer to the study of topological spaces of dimension 1, though this is more typically considered part of continuum theory.